
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 1A 6 J A N U A R Y 1 9 6 4 

Paramagnetism of Liquid Helium Three 

Louis GOLDSTEIN 

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 
(Received 7 June 1963) 

The object of the present paper is the elaboration of a theoretical model describing the paramagnetic 
properties of liquid He3 throughout the region of existence of this phase. The model is based on a molecular 
field theoretical type of approach. The ratios of the actual paramagnetic susceptibility of liquid He3 to the 
one it would have if it were an ideal paramagnet are predicted to be representable through a unique func- ' 
tion depending on the reduced temperature variable. The latter contains the characteristic temperature of 
the nuclear spin system, which, at the present time, is only available empirically through the susceptibility 
ratio data. In the susceptibility ratio-reduced temperature representation all susceptibility ratios of liquid 
He3 fall on a single curve. This theoretical ratio curve describes very closely the experimental ratios, avail­
able through the work of the Duke University investigators, up to values of the reduced temperature of 
0.90-1.0. Beyond this range the experimental susceptibility ratios become systematically larger than the 
calculated ratios, the differences between them being small. Quantitative arguments will be advanced which 
appear to explain satisfactorily these discrepancies and to indicate that the theory should be valid through­
out the whole range of the natural reduced temperature variable. The spin entropy-spin susceptibility rela­
tion, established and used previously, yields, with the theoretical paramagnetism model, rigorous lower 
limits of the entropy, heat capacity and expansion coefficient of the liquid throughout the region of existence 
of this phase. With the recent extension of the melting pressure data to quite low temperatures by the 
University of Illinois investigators, the rigorous spin entropy of the liquid along the melting line allows one 
to estimate the entropy of the solid along the melting line and at low temperatures. Here the solid entropy 
turns out to be less than R ln2, per mole, yielding the temperature of its heat capacity anomaly to be 
below one hundredth of a degree Kelvin. The discussion of the liquid He3-solid He3 equilibrium, on the basis 
of the above results, seems to render questionable any analysis of the thermal properties of the solid which 
ignores the existence of its nuclear spin system even at medium temperatures. Finally, a semiquantitative 
description of the entropy-pressure diagram of He3 discloses various singular characteristics of the liquid 
entropy along the melting line in its pressure dependence, as well as the peculiar features of the solid entropy 
at and around the melting pressure anomaly. 

1. INTRODUCTION 

IN previous work1 on the properties of liquid He3 we 
have attempted to develop a statistical thermo­

dynamic formalism of its nuclear spin system based on 
the spin entropy-spin susceptibility theorem estab­
lished for a class of paramagnetics. In the various char­
acterizations of these paramagnetics we have empha­
sized1,2 that the particular model-like description of 
these systems was strictly auxiliary for the proof of the 
theorem. This, of course, is as it should be to insure the 
statistical thermodynamic nature of the spin entropy-
spin-susceptibility relation in the specified systems at 
hand. Stated more precisely, the spin entropy-suscep­
tibility relation being of sufficient generality, the 
formalism of the susceptibility law could be dispensed 
with essentially, as long as it was possible to verify that 
the conditions of validity of the above relation were 
safely satisfied. 

Recent extensive and systematic experimental in­
vestigations3,4 of the nuclear paramagnetic suscepti­
bility of liquid He3 over wide temperature and pressure 
ranges opened up new ways of gaining a deeper insight 
into the underlying formalism of the nuclear spin 

1L. Goldstein, Phvs. Rev. 96, 1455 (1954); Ann. Phys. (N. Y.) 
15, 141 (1961). 

2 L. Goldstein, Ann. Phys. (N. Y.) 8, 390 (1959). 
3 A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev. 

127, 671 (1962). 
4 A. L. Thomson, H. Meyer, and E. D. Adams, Phys. Rev. 128, 

509 (1962). 

system within the limitations of a phenomenological 
approach. The close approximation provided by the 
antisymmetric ideal fluid susceptibility formula, with 
an empirical parameter, to the description of the ob­
served saturated liquid He3 susceptibility law,5 as well 
as the fair approximation with which the theoretical 
formula, always with an empirical parameter, appeared 
to represent the first compressed liquid He3 suscepti­
bility data,6 seemed to justify the use of the antisym­
metric fluid formalism with the empirical parameter as 
an analytical tool. The strictly approximate and in­
direct character of the above formalism has been always 
emphasized1,2 and the empirical parameter To(p), the 
characteristic temperature of the nuclear spin system,7 

offered alone a challenging problem through its nu­
merical values as well as through its remarkable be­
havior as a function of the macroscopic coordinates 
such as the pressure p or volume V. The above approxi­
mate analytical formalism led first to recognize the 
large numerical value of the partial volume expansion 
coefficient arising with the spin system of saturated 
liquid He3, as well as to a semiquantitative description 
of the partial thermal excitations and volume anomaly 

* W M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev. 
95, 566 (1954). 

6 W. M. Fairbank and G. K. Walters, in Proceedings of the 
Symposium on Liquid and Solid He3 (Ohio State University Press, 
Columbus, Ohio, 1958), p. 1 of the Supplement. 

7 L. Goldstein and M. Goldstein, J. Chem. Phys. 18, 538 (1950). 
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of the liquid over essentially the whole region of exist­
ence of this phase.8 

In the present paper we will derive a phenomeno-
logical model for the observed susceptibility law of 
liquid He3 valid throughout the extension of its phase 
diagram, the phase transformation lines included. The 
model thus predicts the universal character of the sus­
ceptibility ratio formula according to which the latter 
depends uniquely on the reduced temperature r{p) or 
[T/T${p)~], To(p) being the empirically determined 
parameter of the theory. The susceptibility ratio 
[X(r ,^ ) /Xo(r ,^ ) ] , at temperature T and pressure p, 
with % the actual susceptibility and Xo the asymptotic 
ideal susceptibility which the system would have if it 
were a Curie-Langevin paramagnet, being a unique 
function of r(p), all susceptibility ratio values of liquid 
He3 over the whole region of existence of its phase 
diagram must fall on a single curve in the [X/X0 ,r(^)] 
representative plane. 

Within the limitations of the phenomenological sus­
ceptibility-ratio law, the spin entropy-spin suscepti­
bility relation defines rigorously all the partial thermal 
properties of the liquid arising with its nuclear spin 
system. The formalism is then applied to a new evalua­
tion of the partial spin isobaric volume expansion co­
efficients of the liquid, which should approximate 
closely the total volume expansion coefficients at very 
low temperatures and at high pressures, the melting 
pressure included. There appears to be fair agreement 
between the theoretical and the recent indirect experi­
mental determinations of the isobaric expansion coeffi­
cient of the liquid9 at very low temperatures and high 
pressures. 

To within the limitations of the above formalism, 
and the approximations of the empirical T0(p) function4 

and of the melting pressure line PM(T) extended9 down 
to about 0.03°K, the analysis of the liquid-solid trans­
formation yields indications on a substantial deficit of 
the entropy of the solid along the phase transition line 
and at T<0.05°K from its maximum value of R\n2, 
per mole. This suggests that the spectacular heat ca­
pacity anomalies of solid He3 might appear at tempera­
tures T^ 0.010-0.005 °K, a region which remained in­
accessible to experimentation so far. 

With the calculated liquid and solid lower limit en­
tropies, we also discuss various aspects of the problem 
of the equilibrium between the thermally anomalous 
liquid He3 and solid He3. 

The paper ends with a semiquantitative discussion of 
the entropy-pressure diagram of the dense phases of 
He3. The singular character of the two phases along the 
phase separation line emerges here again, with addi-

8 L . Goldstein, Phys. Rev. 102, 1205 (1956); 112,1465 and 1483 
(1958); 117, 375 (1960); Ann. Phys. (N. Y.) 14, 77 (1961). 

9 A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev. 
130, 495, 1644 (1963). I wish to thank the members of this Uni­
versity of Illinois group for advance communication of their recent 
experimental data included in two preprints. 

tional aspects of the thermal behavior of the solid at 
low temperatures. 

2. THEORY OF THE NUCLEAR PARAMAGNETIC 
SUSCEPTIBILITY OF LIQUID He3 

The nuclear paramagnetism of liquid He3 throughout 
the whole range of the variables of state of this phase 
renders this liquid similar to a Weiss type of para­
magnetic system.10 The latter is a nonideal paramagnet 
as a consequence of the interactions between the carriers 
of the elementary magnetic dipoles. Consider the mag­
netic equation of state in the form 

M=f(E/T,V)} (1) 

giving the ensemble average of the magnetic moment 
M, of the system of ideal elementary magnets occupying 
volume V, induced by the application of a uniform 
constant magnetic field of strength H, at the tempera­
ture T. The latter two variables of state appear neces­
sarily through the ratio (H/T) as imposed by the second 
law of thermodynamics as first shown by Langevin.11 

The generalization of the magnetic equation of state (1) 
to nonideal paramagnetic systems postulated by 
Weiss10 consists in conserving the formal structure of the 
function f[(H/T),V~] and replacing the applied external 
field II by an effective field acting within the system, 

Heii=H-hmy (2) 

where hm, the so-called molecular field, is a measure of 
the opposition developed within the system to the 
ordering effect of the applied external field. The molecu­
lar field hm is assumed to arise with the interactions 
within the system. For magnetic dipoles of strength /x, 
the classical magnetic equation of state with H^n re­
placing H on the right-hand side of (1), there being N 
dipoles in volume V, is 

M/Mo= cothO*ffeff/*r)- (kT/vHeu), (3) 

Afo=ify, 

or the Langevin function,11 Mo being the saturation 
moment and k Boltzmann's constant. On assuming10 

that the molecular field hm is of the form 

hm=nl (4) 

where n is an empirical constant and / the magnetiza­
tion, or the magnetic moment per unit volume produced 
by the applied uniform field of strength H, the effective 
field expression (2) with (4) and the equation of state 
(3) yield two equations for the two unknowns, Heu and 
M. In the limit of jxHeu<^kT, one obtains at once the 
susceptibility law 

M/HV=X(T,V) 

= \(Npf/VMT+\nNt?/Vk)-i (5) 

=c/(r+e), 
10 P. Weiss, J. Phys. Radium, 6, 661 (1907). 
11 P. Langevin? Ann, Chim. Phys. 5, 70 (1905). 
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with the Curie constant 

and where 
C=*\Nn2/Vk} 

(6) 

is a characteristic temperature of the system arising 
with the interactions in the nonideal paramagnet at 
hand. The main feature of the preceding modification 
of the ideal paramagnetic equation of state consists in 
the formal preservation of the latter equation of state 
in spite of the introduction of an additional term in the 
response of the nonideal system to the magnetization 
process. This additional term arises with the nonideal 
character of the paramagnetic system; that is, with 
interactions within the system. 

For an ideal collection of particles of angular mo­
mentum sh, of gyromagnetic ratio g, with the natural 
unit MO of the magnetic dipole strength, the magnetic 
equation of state becomes, instead of (3), 

M/Mo= (2s+l/2s) cothl(2s+l/2s)(gSfi0H/kT)'] 

- (1/2.) coth[(l/2*) (gswJB/kT)!, (7) 

Mo=Ngsno, 

as first shown by Brillouin.12 The latter can be again 
modified to represent a nonideal paramagnet within the 
limitations of the molecular field hypothesis.10 In the 
limit of low fields, 

Eq. (7) yields the quantum-mechanical susceptibility 
formula, 

lim x(T,V) = N(gNy(s(s+l)/3VkT) 

=iW/3ra \ 
Ateff2=(#")MH-l). 

(8) 

While for a Weiss paramagnet, and in the limit of 
validity of (5), one again recovers the latter, with the 
Curie constant 

and (9) 
®s=nC8. 

The molecular field approach manifests itself in­
directly on the quantum-mechanical treatment of the 
paramagnetism of a collection of bound, and hence in­
teracting, particles, within the approximations of the 
Heitler-London description of such a system. The 
latter corresponds to the Heisenberg model of the 
system.13-1 At low fields and at sufficiently high tem­
peratures the Weiss law (5) is obtained, provided that 
the characteristic temperature 0 arising with the 

12 L. Brillouin, J. Phys .Radium 8, 74 (1927). 
13 W. Heisenberg, Z. Physik, 49, 619 (1928). W. Pauli, in 

Le Magnetisnte, Proceedings of the Sixth Solvay Congress on Physics, 
Bruxelles, 1930 (Gauthiers-Villars, Paris, 1932), pp. 175-238. 

mutual interparticle couplings is defined by 

®=Ex/2k, (10) 

where Ex is the total exchange energy of one of the 
atoms with all the other atoms of the system. With the 
finite range of the exchange energy of pairs of atoms, 
(Ex,i), the total exchange energy Q2% EXti) or Ex refers 
to the sum of pair exchange energies of neighbors. Pro­
vided that Ex be positive, paramagnetic behavior will 
be assured, since the energy spectrum of the above 
model contains a term 

E(s)~s2Ex/N, (ID 

N being the total number of atoms of the system, and s 
the total spin quantum number of the states in question; 
that is, the number of those spins of the system which 
are available for magnetization upon application of an 
external homogeneous magnetic field. Stated in other 
terms, the contribution to the magnetic moment in­
duced by application of an external field in the above 
states will be proportional to s. In the ground state, 
then, s —> 0; there is no spin angular momentum, nor 
a permanent magnetic moment. Formally, the energy 
term (11) resembles the molecular field energy of the 
Weiss model, where the field hm, defined by (4), leads 
to an energy proportional to (P), the square of the 
magnetization. 

I t should be noted that the quantum-mechanical 
approximation formalism,13'1 while yielding the low 
field susceptibility formula (5) with Cs and @8 defined 
by (9), has to be qualified concerning its validity at 
J H < @ . However, in both the classical and quantum-
mechanical approaches toward the theory of nonideal 
paramagnetic systems, the formal structure of the 
theory of ideal paramagnetics is preserved. The parame­
ter ®, a characteristic temperature of the nonideal 
system, is some kind of a measure of the lack of ideality 
as manifested through the magnetic behavior of the 
paramagnetic system at hand. 

The preceding discussion suggests that a formalism 
preserving approach in the theory of the magnetic 
properties of liquid He3, a system of bound atoms of 
nuclear spin angular momentum ft/2, might be useful 
for a description of the nuclear paramagnetism of this 
liquid. Here, the starting formalism is that of the limit­
ing asymptotic ideal antisymmetric fluid of atoms of 
spin | and elementary dipole moment fx. In presence of 
a constant and uniform magnetic field of strength H, 
the ideal system breaks up into two subsystems with 
the individual energies 

e^—efFfiH y (12) 

the ei's being the individual energies in absence of the 
field. Their distribution functions are, respectively, gi 
being the density of the levels et-, 

^ = g 4 e x p [ a + ( € i
: f A r ) ] + l } - 1 (13) 
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If M(T,V,H) is the magnetic moment induced in this 
system, its magnetic energy is 

-MH= Zi C(-MH)»r+/*ff»*+], (14) 
or, 

M=nZi(nr-n^). (15) 

The parameter a(T,V) or a(T,p) or the negative Gibbs 
free energy per particle in units of k Ty is denned through 
the total number of atoms of the system, that is 

tf=E<(»r+»<+). (16) 

With €{ being the free particle kinetic energies, expressed 
in terms of the linear momenta p and mass m, the dif­
ferential distribution functions, in volume V, become 

=4*(V/k3)fdp{- •fr­ ill) 

where the curly brackets are the same as in (13) with 
€{ replaced by p2/2ni. Finally, replacing the summations 
by integrations over p, one has, with (14), 

M(T,V,H) 

= (FA3)(27r^r)3/2M 

XZF(a-QtH/kT))-F(.a+bH/kT))] 

2 r°° xxlHx 
(18) 

,„ e'+'+l 

Also, with (17) and (15), one has 

N=(V/W)(2irmkTyi 

X lF(a- (jxH/kT))+F(a+ (pH/kT))!, (19) 

and, finally, 

M(T,V,H) F(a- (»H/kT))-F(a+ (pH/kT)) 

Nil F{a- (pH/kT))+F(a+(pH/kT)) 
(20) 

a formula first derived by Stoner,14 using a somewhat 
different approach. 

With the well-known behavior of the F function, 
(20) is easily seen to reduce to the Brillouin function 
for spin \ particles at high temperatures. In the limit 
of low fields, fiH/kT^l, one recovers the moment 
equation 

M(T,V,B) 
l i m ={ixH/kT)[_-F{a)/F{a)-], (21) 

F'(a) = dF/da. 

Our main object now is the study of the modifications 
of the exact moment equation of an ideal antisymmetric 
collection of particles of spin ^ and actual magnetic 
moment /x. I t is instructive to consider first the para­
magnetism of nonideal antisymmetric systems, where 

the nonideality is expressed through the Weiss relations, 
Eqs. (2) and (4). The molecular field approximation is 
equivalent to the replacing of H in (20) by HQu or 
{H-hm), by Eq. (2). In the limit of txHef{<KkT, one 
obtains 

lim (M/Nn)= QiHett/kT)l-F,(a)/F(a)2, 
nHQii<£kT (22) 

= [_(p.H/kT)-ii.nM/VkT~] 

Xi-F'(a)/F(a)l, 

or the nonideal paramagnetic susceptibility law 

M/HV = Xnonid(.T,V) 

C£-F'(a)/F(a)-] (23) 

~T+®l-F' (a)/F(a)-]' 

which is the molecular field generalization of the ideal 
susceptibility formula associated with (21), where 
by (9), 

Ci=Nft/Vk; ®h=nCh. (24) 

It is of some interest to consider briefly the various 
limits of (23). Since in the ideal Fermi gas formalism 

lim l-F'(a)/F(a)]->iT/T0, (23a) 
r«r 0 

where To is the degeneracy temperature, it is seen that 
at r«r 0 , 

Hm xnonid= (tcyro) (i+f0,/ro)-1, (25) 

which is the limiting Pauli susceptibility15 corrected by 
the Weiss temperature ©i. At high temperatures 

lim 1-F'(a)/F(a)li->1, 

and the limiting Weiss paramagnetic susceptibility (5) 
is recovered. As a consequence of the molecular field 
assumption (2), in which the nonideality of the system 
tends to resist the ordering effect of the external field, 
the nonideality superposes itself to the effect of sta­
tistics which imposes a type of order opposite to that 
of the applied field. The susceptibility (23) is thus 
always less than the limiting ideal Fermi gas suscepti­
bility. This result is, of course, similar qualitatively to 
the one expressed by (5), whereby the susceptibility of 
the limiting ideal paramagnetic system is reduced by 
the molecular field correction (2), and the formalism of 
the initial limiting system is qualitatively preserved. 

As far as liquid He3 is concerned, the observations 
rule out the susceptibility behavior as expressed by 
(23). This shows that the classical modifications of the 
molecular field approach are not valid here, in this 
eminently characteristic quantum system. It is, how­
ever, possible to make use of a phenomenological ap-

14 E. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938). J6 W. Pauli, Jr., Z. Physik 41, 81 (1927). 
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proach which is more conform to the approximate 
quantum-mechanical picture of the molecular field 
method. The latter has no direct connection with the 
original Weiss assumption, Eq. (2), but refers to the 
modification of the energy spectrum of the system 
arising with the interactions within the system. This 
approach yields thus a new Gibbs free energy per atom 
or a new effective parameter aea replacing the limiting 
ideal antisymmetric fluid parameter a in the para­
magnetic moment equation (20). Or, since 

a=-Gid/kTr . (26) 

and the molecular field correction being <xm, 

a e f f=a+a m (27) 
= -(Gid/kT)-(Gm/kT), 

where Gm corresponds to the average corrective free 
energy per atom. At low enough temperatures where 
the temperature-entropy product term of the free 
energy is small, and where in passing from a to aeff, the 
pV product is kept constant, the modification of da 
will occur essentially in its energy term. In the present 
case, the main effect to be expected in Gm may reasona­
bly be attributed to the limiting effect of the atoms in 
the nonideal system associated with an overall depres­
sion of the energy. This results, Gm being negative, in 
raising aeff over and above the value of the limiting 
ideal parameter a. In order for the preceding modifica­
tion to satisfy the condition of preserving the formalism 
of the magnetic properties of the starting ideal system, 
it is necessary that the functional relation 

a=a(r), T=T/T0, (28a) 

remain unchanged in 

aeu=a(Tm)j rm=T/Tm, (28b) 

where Tm represents the new characteristic temperature 
of the system defined through the molecular field type 
of average of the nonideal paramagnetic behavior of the 
actual system. In the limit of low fields, one obtains 
with (21) and (27), 

lim M(T,V,H)/VH=Xm(l^V) 
txH/kT<gl 

= (.Cl/T)£-F'(fxM)/F(aM)l. 

(29) 

At low temperatures and within the ideal antisymmetric 
fluid formalism 

lim ( - F ' / F H f C - a e f f ) - 1
 / x 

T small (30 ) 

= ![-«+I a™ I]""1, 
since am or (~Gm/kT) is always positive if the correc­
tive term Gm is determined by lowering the energy in 
correcting for the nonideality. Plausible arguments for 
this situation, required by the observed liquid He3 

nuclear paramagnetic susceptibilities, have been ad­
vanced by us previously2 on the basis of simplifying 
assumptions on the interactions within the system. In 
terms of (28), one also has 

lim Xw =f(Q/r)rw 
T small ( 3 1 ) 

= 2 W / 2 m, 

which, with (21), (23a), and (30), requires that 

Tm>r, Tm<To, (32) 

where, in Tm and To, the macroscopic volume depend­
ence may be changed into pressure dependence with 
the help of the equation of state. At high temperatures,, 
«eff> 1, and the expansion of (—Fr/F) proceeds accord­
ing to ascending powers of (rm~3/2), or, 

lim Xm= (Cj / r ) ( 1 - vrm~m+ • • • ) , (33) 
T large 

where v is a numerical coefficient. 
I t should be noted here that the preceding phe~ 

nomenological model imposes no limits on the numerical 
values of the characteristic temperatures Tm, or on 
their dependence on the variables of state. The in­
equality (32) is conform to the observations and the 
ensuing empirical determinations of the Tm(V) or 
Tm(p) functions. I t is seen on (31) and (5) that the 
molecular field parameters Tm or ® are defined through 
the finite paramagnetic susceptibilities in the limit of 
the absolute zero. The classical approach leading to 
(25) contains both characteristic temperatures T0 and 
©*. 

I t will be observed that the low field nonideal para­
magnetic model considered here is such that its sus­
ceptibility satisfies the inequalities 

X « < X T O < X 0 , (34) 

where Xid refers to the susceptibility of the limiting 
ideal antisymmetric fluid of the same density as the 
actual fluid, and X0 stands for the asymptotic Langevin-
Brillouin susceptibility, Eq. (8), which the actual fluid 
would exhibit if it were an ideal classical paramagnetic 
system. The inequalities (34) are conform to the ob­
servations3'4,6 throughout the region of the phase dia­
gram of He3 reserved to the liquid phase and explored 
so far. 

The description of the above nonideal paramagnetic 
system may be modified through the use of the sus­
ceptibility ratios 

r(T,y)=Xm(Tyy)/XQ(T,y) 

= XmT/C, ( v ° 

y standing for V or p, and C being the appropriate 
Curie constant associated with the actual system. Since 
the susceptibility ratio defines the spin entropy,1 the 
latter together with the empirically obtained functional 
relations Tm(V) or Tm(p) allows a rigorous derivation 
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of the partial thermal properties of liquid He3 arising 
with its nuclear spin system.2'8 

The main characteristic of the preceding model re­
sembles that of the Weiss model of classical nonideal 
paramagnets. At low magnetic field strengths, the 
temperature dependence of the ideal Langevin para­
magnetic susceptibility is modified, in the nonideal 
system, by substitution of the effective temperature 
( r+@) for the temperature T, in the susceptibility 
law. The over-all formalism preserving feature of the 
molecular field-theoretic model is an important element 
of this approach. In our problem posed by liquid He3, 
the ideal asymptotic system is that of a Fermi gas of 
spin \ point atoms with the effective elementary dipole 
moment ix. Through the quantum-mechanical formalism 
of the molecular field approach, it is possible then to 
modify the ideal fluid formalism, preserving its over-all 
structure to a degree, so as to be adapted to the nonideal 
paramagnetic system. This is achieved formally by re­
placing the ideal free energy by the one including 
formally the average quantum-mechanical molecular 
field energy term. This is then equivalent to replacing 
the natural reduced temperature variable of the ideal 
system, T/TQ, T0 being the ideal gas degeneracy tem­
perature, by the effective reduced temperature T/Tm(p), 
where Tm(p) is the empirically derived characteristic 
temperature of the system. This phenomenological pro­
cedure preserves the formal structure of the ideal fluid 
paramagnetic susceptibility theory. Inasmuch as Tm(p) 
can be completely different from T<$, referring to the 
ideal fluid of the same density as the actual system, it is 
seen that the possibility for a perturbation theoretical 
scheme allowing to derive Tm from To is rather remote. 
The preceding approach toward the nonideal para­
magnetic behavior of liquid He3 does not seem to 
impose clear limitations on the validity of the theory 
as far as the length of the interval of the effective re­
duced temperature [T/Tm(p)~] is concerned. 

We turn now to the comparison of the phenomeno­
logical theory of the nonideal paramagnetic suscepti­
bilities obtained above with the recent detailed 
measurements.3'4 

3. COMPARISON OF THE THEORETICAL AND 
EXPERIMENTAL PARAMAGNETIC 

PROPERTIES OF LIQUID He3 

According to the phenomenological theory of the 
nonideal paramagnetism of systems like liquid He3 

formulated above, the susceptibility ratio law 

X(T,p)/MT,p) = -F'taetf(T,p)l/F[aM(T,p)l 

through 
ctett(T,p) = Kr(p)> ILT/T«(p)l, (37) 

is a unique function of the reduced tamperature r(p) 
or T/To(p) throughout the region of existence of the 
liquid phase of He3.. This function is identical with the 

one occurring in the ideal spin one-half antisymmetric 
fluid formalism, with TG(p) being though an empirically 
determined characteristic temperature of the spin 
system with its characteristic pressure dependence to be 
determined also by observations, at the present phe­
nomenological stage of the theory. We shall henceforth 
replace the subscript m used in the preceding section 
by the subscript zero. 

Stated in other terms, the susceptibility ratio law 
(36) requires that, when represented as a function of the 
reduced temperature r(p) or [T/To(p)'], all suscepti­
bility ratio values in liquid He3 must fall on a single or 
universal curve. The latter is associated with the collec­
tion of ideal Fermi systems of particles of spin angular 
momentum ft/2. Various limiting series representations 
of the susceptibility ratio have been given previously 
by Stoner.16 The exact numerical evaluation of the sus­
ceptibility ratio law over an extended range of r has 
been performed in this Laboratory by Jordan and 
Crandall17 using electronic computers. The suscepti­
bility ratio (36) has been given in graphical form by 
us,1-2 to within the factor (ln2), up to values of r equal 
to 5. Our task is now a close study of the experimental 
evidence for or against the formula (36). 

As mentioned in the Introduction, there are, at the 
present time, two important series of liquid He3 nuclear 
magnetic susceptibility determinations originating at 
the University of Illinois3 and Duke University.4 The 
Illinois group, guided by Dr. Wheatley, with its own 
technique of measurements of the various thermal 
properties of liquid He3 down to temperatures of the 
order of 0.01-0.03°K, depending on the pressure applied 
on the liquid, limited the susceptibility determinations 
to temperatures T<0.10°K. This low temperature 
range was supplemented by susceptibility determina­
tions at one or two higher solitary temperatures for 
purposes of an experimental normalization procedure. 
The Duke University group, led by Dr. Meyer, explored 
the paramagnetic behavior of liquid He3 throughout the 
temperature range 0.05-1.0°K, in a systematic way. 
The pressure interval investigated by both groups of 
investigators extended up to or somewhat above the 
minimum of the melting pressure. For purposes of 
judging the accuracy with which the susceptibility law 
(36) is capable of describing the magnetic properties of 
liquid He3 over the allowed range of variations of its 
thermodynamic state coordinates, the Illinois and Duke 
University data should have been combined into a 
single set as representing, at the present time, the ob­
served magnetic properties of liquid He3. This is, how­
ever, excluded for the time being because of as yet un­
explained numerical differences between the two sets of 
experimental results. The T0(p) values of the Illinois 

16 E. C. Stoner, Proc. Leeds Phil. Lit. Soc. Sci. Sec. 3, Part IV, 
191 (1936) and Part VII, 403 (1938); J. McDougall and E. C. 
Stoner, Phil. Trans. Roy. Soc. London 237, 67 (1938). 

17 Th. L. Jordan, Jr., and K. R. Crandall (unpublished).. 
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group are consistently larger than those of the Duke 
University workers at the lower and medium pressures. 
At the higher pressures these characteristic tempera­
tures seem to agree better. As a result, the functional 
dependence of To on the pressure seems to be con­
siderably stronger with the Illinois than with the Duke 
University data. An explanation of these differences 
may become possible in the future, when the two sets 
of results may be combined and, in addition, these com­
bined data may be supplemented by susceptibility de­
terminations in the less accessible regions, as well as 
with those in other regions of the phase diagram of 
liquid He3 which remained unexplored so far. 

For our immediate purposes, the systematic Duke 
University magnetic measurements, with their dense 
coverage of the extended temperature interval, recom­
mended themselves for their analysis in connection 
with the susceptibility law (36). With the option of 
one set of data, however more complete than the other, 
one automatically increases the degree of the limitations 
on the validity of the conclusions to be drawn from the 
confrontation of the theoretical paramagnetic behavior 
and the chosen set of measurements. 

The collection of the important data of the Duke 
workers4 is included in their Table I. This gives 
lx(T,p)/TXQ(T,p)2 or Zx(T,p)/C}, at the pressures of 
0.5, 6.8, 13.6, 20.5, 30.5 and 30.7 atm, and at a series of 
temperatures from 1.0°K downward, with the extrapo­
lated limits of the above property at T —> 0. From these 
limits one obtains, with (31), the characteristic tem­
peratures To(p), denoted by Tm in (31). I t is to be 
noted that the tabulated values of (x/C), given by the 
Duke workers, result from smoothing their own experi­
mentally determined (x/C) values. 

In the present studies the susceptibility ratios (X/X0) 
or (xT/C) are of cardinal interest. These ratios are 
essentially equivalent to the tabulated data of the Duke 
workers, being the product of the temperature T and 
the tabulated numbers. Actually, the table of suscepti­
bility ratios would carry larger relative errors, possibly 
the double of the relative errors of the susceptibilities 
themselves. Disregarding the highest pressure data of 
30.7 atm which are very close to the 30.5 atm data, the 
five other isobaric susceptibility ratios are described by 
a collection of some eighty values, each given at sixteen 
temperatures, omitting their vanishing values in the 
limit of the absolute zero. The susceptibility ratios 
\jx(T,p)/X0(T,p)'] along isobars have been determined 
as a function of the temperature. In terms of the reduced 
temperatures r(p), or [T/TQ(P)~], the temperatures of 
the Duke4 table give rise to a number of nearly identical 
r(p) values with the attendant very close susceptibility 
ratios. These close agreements of the experimental sus­
ceptibility ratios at the nearly identical r(p) values are, 
of course, conform to the predicted paramagnetic be­
havior of liquid He3 according to the molecular field 
type of theoretical model advanced in the present work. 

In order to free the present discussion, as much as 

possible, from involving subjective quantities associated 
with the data, it seems necessary to omit essentially all 
considerations relative to the estimated experimental 
accuracies and precisions. The analysis in depth of 
these aspects of the data should be, of course, always 
an important part of any account and description of 
experimental results and measurements. In the present 
case, the experimental uncertainties refer to those of 
the thermodynamic state coordinates, T and p, as well 
as to those of the susceptibility determinations. 
Actually, the problem of estimating the experimental 
errors in the susceptibility determinations appears to be 
more difficult than would be the case with techniques 
whose principal goal would be the direct measurement 
of this physical property. In the nuclear magnetic reso­
nance techniques used in the experimental investiga­
tions of the equilibrium magnetic properties of liquid 
He3, resonance frequencies or periods rather than am­
plitudes form the principal objects of measurements. 
While the amplitudes are proportional to the induced 
paramagnetic moments and, hence, define the suscepti­
bility of the sample investigated, the possibility of am­
plitude determinations appear to be more of a windfall, 
of secondary and reduced interest, and the ultimate 
physical property associated with the amplitudes is in­
extricably tied to the a priori inaccessible apparatus 
constant. In order to extract from the measured ampli­
tudes the susceptibilities it is indispensable that the 
apparatus constant be determined however indirectly 
and with inevitable uncertainties, which, of course, will 
always plague the numerical values of the so derived 
susceptibilities. Using the early recognized approach5 

of the liquid He3 paramagnetic susceptibility toward 
the asymptotic ideal Curie-Langevin limit, it is either 
assumed at some higher temperature, J P > 1 . 0 ° K , that 
the ideal limit has been reached,3 or one attempts to 
justify the reaching of this limit,4 always from below, 
within the limits of the reduced precision of the tech­
nique in this range of highly reduced "amplitudes" or 
susceptibilities when compared with the low tempera­
ture amplitudes. In principle, the actual susceptibilities 
never reach their asymptotic ideal limit, so that, the 
above "normalization" procedure can never be justified 
rigorously. I t is thus seen that the limitations inherent 
in the nuclear resonance techniques will raise difficulties 
for a detailed confrontation of the experimentally de­
rived susceptibilities with those evaluated with the phe-
nomenological theory of paramagnetism developed 
above, whose validity does not seem to be limited to 
finite intervals of the thermodynamic state coordinates 
of liquid He3. 

Various difficulties of physical character result from 
the above normalization procedure. This requires that 
at some medium temperature Tn, and at T> Tn, the 
susceptibilities should be ideal, within the precision of 
the technique used. At T<Tn, the susceptibilities are 
manifestly nonideal. According to the theory of the 
spin system,1,2*8 the normalization procedure is equiva-
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lent to postulate that the temperature and pressure 
derivatives of the spin entropy Sff(T,p) vanish dis-
continuously at Tn. Or, one should have 

dS,/dT>0, 2 X 7 V , 

dS<r/dT=0, T>Tn+, 
and, 

(ds,/dp)T9*o, r<rn_, 
(dS,/dp)T=o, r>rn + , 

or, in terms of the partial spin heat capacity and spin 
volume expansion coefficients, 

c„>o, r<rn_, 
C ( r = : 0 , 1 > 1 „+ , 

acpT^Oy T<Tn-> 

ao-.̂ o, r>rw+. 
The heat capacity and expansion coefficient jumps 
would occur at the chosen Tn values. Heat capacity 
measurements,18 experimental investigations of the 
equation of state19,20 of liquid He3 and volume expansion 
coefficients measurements21 at medium temperatures 
rule out the above "normalization" discontinuities. 
Furthermore, in attributing ideal susceptibilities to the 
liquid at T> Tn, allowing this property to effectively 
reach its upper limit of strictly asymptotic character, 
should have the effect to accelerate its rate of increase 
at the approaches of Tn and overestimate the actual 
susceptibility. This modification of the susceptibilities 
should become less effective at lower temperatures dif­
fering increasingly from Tn. 

The preceding discussion, while hardly exhaustive, 
indicates that the conclusions to be drawn from a de­
tailed comparison of the theoretically obtained sus­
ceptibilities with the highly indirect experimental ones 
will have to be strongly qualified because of the multiple 
limitations of the data. 

We give in our Table I the eighty experimental sus­
ceptibility ratios of the Duke University group,4 

grouped according to their reduced temperatures r(p) 
or J[T/To(p)29 the characteristic temperatures T0(p) 
being also empirical and having been derived by these 
investigators from their own data.4 The r values of the 
table appear in the numerical tables of the calculated 
ratios hc(T,p)/xo(T,p)l or (xT/C), obtained by 
Jordan and Crandall,17 which accounts for their carrying 
more decimal figures than warranted by any experi­
mentally determined reduced temperatures. The second 
column gives the experimental susceptibility ratios, the 
third contains the calculated ratios, the fourth represent 
their relative deviations, the fifth and sixth give the 
liquid temperatures and pressures. Clearly, part of this 

18 T. R. Roberts and S. G. Sydoriak, Phys. Rev. 98,1672 (1955). 
19 E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959). 
20 R. H. Sherman and F. J. Edeskuty, Ann. Phys. (N. Y.) 9, 

522 (1960). 
21 E. C. Kerr and R. D, Taylor, Ann, Phys. (N. Y.) 20, 450 

(1962). 

Table I giving (xT/C)0*io as a function of r in the range 
0.0<r<5.0, is, of course, an exact table of the theoreti­
cal ratios. There are no data over r ranges at r<0.10, 
and at r>4.0. We also give in Fig. 1 the theoretical 
susceptibility ratio curve at 0<r<4.0, together with 
the eighty experimental points. 

With all due reserve entailed by the various limita­
tions of both qualitative and quantitative character of 
the data4 accepted for the present discussions, our 
Table I and Fig. 1 seem to justify a first tentative con­
clusion. Namely, the theoretical susceptibility ratios 
appear to fully describe the experimental situation over 
a limited range of the reduced temperature r, extending 
to about 0.90-1.0. At r>1.0, the systematically larger 
experimental ratios might suggest some positive correc­
tion term to the phenomenological theory. It is to be 
noted that while systematic, these deviations might be 
still compatible with the possibly large experimental 
uncertainties. From the point of view of the molecular 
field theoretical type of model, developed in the pre­
ceding section, its apparent breakdown at the rather 
large values of 0.9-1.0 of the natural independent 
variable of the problem, r, is rather unexpected, to say 
the least. If the theory had broken down at much 
smaller values of r, the breakdown would have sug­
gested an asymptotic validity only of the theory, 
limited to a small range of r. In view of the tolerable 
values of the systematic positive relative differences 
between the experimental and calculated (%T/C) 
values, at r>1.0, we would like to advance now a 
possibly acceptable explanation of this discrepancy. 

It may be justified at the present time, to adopt ten­
tatively a less conservative attitude in the comparison 
of the experimental and theoretical susceptibility 
ratios, provided one attributes the systematic deviations 
at r > 0.90-1.0, to the difficulties arising with the over 
all decreased experimental precisions at and above the 
normalization temperature Tn, leading to the above-
mentioned inconsistencies arising with the adopted 
normalization procedure. This tends to lift the values 
of the susceptibilities derived from the experimentally 
accessible resonance amplitudes over and above their 
actual values. This lifting effect may reasonably be 
expected to become more effective beyond the vertex of 
susceptibility ratio curve where this curve has curva­
tures distinctly below its maximum curvature realized 
at its vertex. The curvature, or the reciprocal of the 
radius of curvature, is defined by 

- = | ffi/di*(xT/Q \/Ll+(d/dr(XT/C)y2m, (38) 
P 

or, in terms of the spin entropy-susceptibility relation 
this may also be written as, 

-=(<f/<fr)(C,(r)/i?)-(Cy#T)/ 
P r(ln2)[l+[C,/i?r(ln2)]2]^. (39) 
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r 

0.00 
0.025 
0.030 
0.050 
0.060 
0.070 
0.080 
0.085 
0.090 
0.095 
0.10465 
0.12000 
0.13932 
0.13954 
0.15517 
0.16000 
0.17442 
0.18576 
0.18605 
0.20690 
0.21333 
0.23256 
0.23256 
0.24768 
0.26667 
0.27586 
0.27907 
0.30960 
0.31008 
0.32000 
0.32558 
0.34483 
0.37152 
0.37209 
0.37335 
0.38760 
0.41379 
0.41861 
0.42667 
0.43344 
0.46512 
0.46512 
0.48000 
0.48276 
0.49536 
0.53333 
0.54264 
0.55172 
0.55728 

/xT\ 
( — ) 
\ L- / exp 

0.157 
0.179 
0.205 
0.206 
0.226 
0.233 
0.253 
0.267 
0.267 
0.296 
0.302 
0.322 
0.327 
0.348 
0.368 
0.378 
0.374 
0.420 
0.420 
0.431 
0.420 
0.450 
0.491 
0.466 
0.486 
0.488 
0.510 
0.509 
0.533 
0.560 
0.544 
0.544 
0.574 
0.566 
0.608 
0.616 
0.592 
0.611 
0.648 

T A B L E I 

/xA 
( — ) 
\ C- /calc 

0.00 
0.03748 
0.04497 
0.07484 
0.08973 
0.1046 
0.1194 
0.1267 
0.1341 
0.1414 
0.1557 
0.1777 
0.2053 
0.2056 
0.2276 
0.2343 
0.2541 
0.2694 
0.2698 
0.2973 
0.3056 
0.3299 
0.3299 
0.3485 
0.3711 
0.3817 
0.3853 
0.4190 
0.4195 
0.430 
0.4358 
0.4552 
0.4809 
0.4814 
0.4825 
0.4956 
0.5184 
0.5224 
0.5291 
0.5346 
0.5592 
0.5592 
0.5702 
0.5722 
0.5811 
0.6065 
0.6124 
0.6180 
0.6214 

. Experimental and theoretical nuclear susceptibility ratios of liquid 

exp-calc 

% 
exp 

1.27 
0.56 
0.00 
0.00 

-0.88 
-0.43 
-0.40 
-0.75 
-1.12 
-0.34 
-1.32 
-2.48 
-0.92 
0.00 

-0.82 
-1.06 
-2.94 
0.24 
0.00 
0.23 

-3.81 
-1.11 
2.04 

-3.22 
0.62 

-1.64 
-1.57 
-2.55 
0.75 
4.29 

-2.76 
-2.76 
0.70 

-1.06 
4.44 
1.62 

-3.38 
-1.15 
4.17 

T 
(°K) 

0.045 
0.045 
0.045 
0.06 
0.045 
0.06 
0.045 
0.06 
0.08 
0.06 
0.08 
0.10 
0.06 
0.08 
0.10 
0.08 
0.12 
0.10 
0.08 
0.12 
0.14 
0.10 
0.12 
0.16 
0.14 
0.10 
0.12 
0.18 
0.16 
0.14 
0.20 
0.12 
0.18 
0.14 
0.16 
0.20 
0.14 
0.16 
0.18 

P 
(atm) 

0.5 
6.8 
13.6 
0.5 

20.5 
6.8 

30.5 
13.6 
0.5 
20.5 
6.8 
0.5 
30.5 
13.6 
6.8 

20.5 
0.5 
13.6 
30.5 
6.8 
0.5 
20.5 
13.6 
0.5 
6.8 

30.5 
20.5 
0.5 
6.8 
13.6 
0.5 
30.5 
6.8 

20.5 
13.6 
6.8 

30.5 
20.5 
13.6 

r 

0.61920 
0.62016 
0.62069 
0.68966 
0.69767 
0.69768 
0.77519 
0.80000 
0.92879 
0.93023 
1.03448 
1.06667 
1.16279 
1.16279 
1.23839 
1.33333 
1.37931 
1.39535 
1.54799 
1.55039 
1.60000 
1.62791 
1.72414 
1.85759 
1.86047 
1.86667 
1.93799 
2.06897 
2.13333 
2.16718 
2.32558 
2.32558 
2.41379 
2.47678 
2.66667 
2.71318 
2.75862 
3.09598 
3.10078 
3.44828 
3.87597 
3.90 
3.95 
4.00 
4.10 
4.25 
4.50 
4.75 
5.00 

/xT\ 
V ) \ C- /exp 

0.680 
0.638 
0.657 
0.690 
0.675 
0.702 
0.704 
0.768 
0.825 
0.804 
0.831 
0.852 
0.834 
0.870 
0.908 
0.910 
0.908 
0.924 
0.950 
0.912 
0.948 
0.966 
0.955 
0.978 
0.984 
0.987 
0.960 
0.984 
0.992 
0.994 
1.0 
0.990 
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1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

/xT\ 
( — ) 
\ ^ /calc 

0.6563 
0.6568 
0.657 
0.6905 
0.6941 
0.6941 
0.7256 
0.7346 
0.7750 
0.7754 
0.8014 
0.8084 
0.8274 
0.8274 
0.8403 
0.8544 
0.8605 
0.8626 
0.8798 
0.8801 
0.8849 
0.8875 
0.8957 
0.9056 
0.9058 
0.9063 
0.9109 
0.9185 
0.9218 
0.9235 
0.9306 
0.9306 
0.9341 
0.9364 
0.9427 
0.9441 
0.9454 
0.9536 
0.9537 
0.9602 
0.9664 
0.9667 
0.9673 
0.9679 
0.9690 
0.9706 
0.9730 
0.9750 
0.9768 

He3. 
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— — % 
exp 

3.53 
-2.98 
0.00 
0.00 

-2.81 
1.14 

-3.12 
4.30 
6.06 
3.61 
3.61 
5.16 
0.84 
4.94 
7.49 
6.15 
5.18 
6.60 
7.37 
3.51 
6.65 
8.18 
6.18 
7.40 
7.93 
8.21 
5.10 
6.71 
7.06 
7.04 
6.90 
5.96 
6.04 
6.40 
5.70 
5.60 
5.50 
4.60 
4.60 
4.00 
3.40 

T 
(°K) 

0.20 
0.16 
0.18 
0.20 
0.18 
0.30 
0.20 
0.30 
0.30 
0.40 
0.30 
0.40 
0.50 
0.30 
0.40 
0.50 
0.40 
0.60 
0.50 
0.40 
0.60 
0.70 
0.50 
0.60 
0.80 
0.70 
0.50 
0.60 
0.80 
0.70 
1.00 
0.60 
0.70 
0.80 
1.00 
0.70 
0.80 
1.00 
0.80 
1.00 
1.00 

P 
(atm) 

13.6 
30.5 
20.5 
20.5 
30.5 
0.5 

30.5 
6.8 
13.6 
0.5 
20.5 
6.8 
0.5 

30.5 
13.6 
6.8 
20.5 
0.5 
13.6 
30.5 
6.8 
0.5 
20.5 
13.6 
0.5 
6.8 

30.5 
20.5 
6.8 
13.6 
0.5 

30.5 
20.5 
13.6 
6.8 

30.5 
20.5 
13.6 
30.5 
20.5 
30.5 

One finds that the vertex is at about r close to 0.47, 
while the curvature did decrease by a factor of about 
two at r close to 0.95. I t should be noted that the graph 
of Fig. 1 is somewhat deceptive because of the different 
linear scales of the ordinate and abscissa. By Table I, 
the normalization procedure is equivalent to force the 
ratio curve to reach its "asymptote" at r values of 
about 2 to 3, depending on the pressure. The asymp­
totic region of the experimental ratio curve is effectively 
eliminated and its curvature made to drop discon-
tinuously to zero at the r value of about 2. This is a 
likely explanation of the systematic though fairly small 
excess values of the experimental susceptibility ratios 
over the calculated ones at increasing r values beyond 
about r > 0.90-1.0. A verification of this tentative con­

clusion might be possible by renouncing the normaliza­
tion procedure used so far, and, above all, by increasing 
the experimental precision so as to increase the normal­
ization temperature Tn or the normalization rn values. 
In this way, the condition imposed upon the experi­
mental susceptibilities to become ideal at these elevated 
Tn or Tn values will have a more moderate effect of de­
formation, and the possible agreement between the ex­
perimental and theoretical susceptibilities may extend 
over a wider range of r values than realized at the 
present time. 

If this second less conservative attitude advanced 
here is given up for the first more cautious one, then, 
as stated already, within the various limitations men­
tioned in the course of this analysis, the theory appears, 
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FIG. 1. The liquid He3 theoreti­
cal paramagnetic susceptibility 
ratio curve (xT/C), as a function 
of the reduced temperature r, and 
the experimental data obtained by 
the Duke University investigators, 
Ref. 4. 
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to describe satisfactorily the data over the range 
0<r<0.9 . This in turn would justify the use of the 
susceptibility formalism based on the molecular field 
theoretical type approach as a basis for the theory of 
the thermal properties of the nuclear spin system of 
liquid He3 over a limited range of r, but throughout the 
pressure range of existence of this phase. As mentioned, 
the formalism is to be completed by the empirical con­
nection between the characteristic temperatures T0 of 
the spin system and the pressure p. 

To resume then, as required by the theory advanced 
here, all susceptibility ratios x(T,p)/xo(T,p), or 
[xiT^T/C"], of liquid He3 fall on a unique curve when 
represented as a function of the reduced temperature 
r(p) or [ r / r 0 ( » ] , up to about T^O.9— 1.0. 

We turn now to various applications of the theory of 
the spin system advanced here. 

4. THERMAL PROPERTIES OF THE NUCLEAR 
SPIN SYSTEM 

By the spin-entropy-spin-susceptibility relation,1 the 
entropy of the nuclear spin system is 

Sff(T,p)/R= (In2)[x(r,£)/X0(7>)], (40) 

or, since the right-hand side depends only on the re­
duced temperature r(p), the spin entropy S<r(T,p) is 
also a function of this natural variable. We have used 
this property of Sa previously2,8 on explicitly assuming 
that the ideal antisymmetric fluid formalism may be 
used as an analytical approximation in the description 
of the nuclear spin system. The molecular field theoretic 
type approach followed in the preceding sections 
removes the necessity of this assumption, and when it 
is used in conjunction with the pressure law of the 
characteristic temperature T0(p) of the spin system, 
the equation of state of the latter becomes fully de­
termined. This then is the basis of a rigorous statistical-
thermodynamic formalism of the partial thermal prop­
erties of liquid He3 arising with its nuclear-spin system. 
It yields a rigorous lower limit of all those thermal 
properties of this liquid which can be represented addi-
tively in terms of those of the spin system and those 
arising with the degrees of freedom other than spin. 
The limitations of this statistical-thermodynamic 
formalism are determined by those of the theory of 
paramagnetism discussed above, to which one has to 
add the uncertainties arising with the empirically de-
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FIG. 2. The analytical fit to the empirically derived character­
istic temperatures of the nuclear spin system of liquid Hes as a 
function of the pressure TQ(p), with the data points. 

rived functional connection TQ(p). By thermodynamics, 
the constant pressure heat capacity of the spin system is 

C,tV(T,p)/R 
= (T/R)[dS.(T,p)/dTlP 

-[r{p)/R]{d/dr)lS,{r)-} (41) 
= f ( l n 2 ) [ ^ ( « e f f ) / ^ ( « e f f ) - ^ ( « e f f ) / F ( a e f f ) ] , 

where use was made of the relation (36) and (37), as 
well as of those of the ideal antisymmetric fluid for­
malism1,2 valid to the extent of its intervention in the 
theory of the nonideal spin paramagnetism developed 
here. The universal character of (X/xo), Sa{r) and 
C<T(T) clearly emerges here through the reduction of 
these thermal properties to their sole dependence on the 
reduced temperature r. The dependence of these 
thermal properties on one of the other coordinates of 
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FIG. 3. The partial spin expansion coefficients a , of liquid He3 

along the indicated isobars and the melting pressure pM as a 
function of the temperature. 

state, p or V, is included in the implicit dependence of 
r on either one of these coordinates. 

The spin-heat capacity has been discussed pre­
viously1'2'8 and will not be considered here any further, 
since its functional form is identical with the one 
assumed in earlier work. 

The partial isobaric spin expansion coefficient 
a9{T,p) or the product a<rtP(T,p)V{T,p), that is, by 
(41) and the definition of r(p), 

a*AT,pMT,p)=-tdS9(T,p)/dplT 
= -LdS9(T)/dTlP(dT/dp) (42) 
-LC,p(r)/To(p)lLdTQ(p)/dp2, 

is, however, of great interest inasmuch as this quantity 
is now rigorously expressed formally with the help of 
the empirical function T0(p). The limitations involved 
in the previous evaluation of this property2,8 have now 
been lifted. The estimation and assessment of the pre­
cision of the numerically evaluated spin expansion co­
efficients through the rigorous relation (41) presents a 
difficult problem at the present time. The errors in 
V(T,p) are likely to be quite small,20 those in CO,P(T) 
involve the errors in the numerical values of T0(p), 
while the precision of the derivatives [_dT^{p)/dp~\ 
depends critically on the empirical T0(p) relation. 

The T0(p) function resulting from the Duke Uni­
versity data is given in Fig. 2 as the drawn curve, which 
is a least square fit with a hyperbola type function with 
three parameters, to the data points given on the graph. 
The T0(p) function has been extrapolated beyond the 
last highest pressure data point over a limited pressure 
interval. 

Using the empirical4 T0(p) function, we have ob­
tained in Fig. 3, several a*,p(T,p) curves, along the 
indicated isobars, together with 

®ff,PMi or the spin-
expansion coefficients along the melting pressure line 
pM{T). The temperature interval extends only to 
0.25°K, so that these calculated spin-expansion co­
efficients although lower limits of the total volume-
expansion coefficients ap(T,p), may be fair approxima­
tions to the latter over the above restricted temperature 
range. Actually, the approximation achieved by a«r)P on 
ap improves as the temperature decreases, so that a* 
should be fairly close to the exact total expansion co­
efficients at r<0.10°K. Although similar to the a„'s 
obtained in the previous calculation of considerably 
poorer approximation, the new values are larger nu­
merically than the earlier ones.8 As to the a9,PM values 
along the melting pressure line, these are based on a 
slight extrapolation of the empirical TQ(p) function 
from 30.5 to about 33 atm. This extrapolation is per­
formed in terms of the analytical least-square fit of the 
empirical T0(p) data. 

At the present time, an approximate evaluation of 
the additive positive partial nonspin expansion co­
efficient represented by the thermodynamic relation2-8 

an*ATS = hn*(T,p)xAT,p)CnffAT,P)/V(T,p), (43) 
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is hardly feasible. Here, ena is a parametric function, 
XT is the isothermal compressibility and Cn<T,P the con­
stant pressure nonspin heat capacity. Values of the 
latter are not available, while the parameter enff can 
only be reached through the subtraction of the theo­
retical a<r's from the experimental aps. 

A glance at the c^-curves of Fig. 3 shows that below 
about 0.06°K, or so, where these spin expansion co­
efficients should be close to the observed total expan­
sion coefficients of the liquid, experimental discrimina­
tion of the expansion coefficients along isobars p> 10-15 
atm may hardly succeed. At increasing temperatures, 
with ow becoming more significant a narrowing of the 
band of the actual expansion coefficient curves may be 
expected on the following grounds. In (43), the nonspin 
heat capacity Cn<r,P and compressibility XT factors, 
with their decrease on increasing pressure, overtake the 
increase in £l/V(T,p)~}- With the rate of decrease of 
oina,v being likely the largest at the lower pressures, and 
the smallest at the higher pressures, the lowest pressure 
a<r's will be raised the most by their complement of aw<r, 
the highest pressure a</s will be raised the least. Hence, 
the differences between the various total aps, at the 
same temperature, will be minimized as compared with 
the differences between the afftP values at the various 
pressures. As shown by us previously2,8 the family of 
aa%p curves, are modified by the positive a»ff|3/s so as to 
insure the lower pressure ap's to reach their zero first, 
and the higher pressure â ŝ to reach their zero at in­
creasingly higher temperatures. This interval of the 
zeros of ap extends from about 0.50°K, at saturation 
pressure, to about 1.25°K, at 47 atm, approximately. 
The complete coalescing of the total expansion coeffi­
cient curves along the various isobars is hard to con­
template at 7">0.10°K, although their differentiation 
above 15 atm may become quite laborious experi­
mentally, within the expected, possibly fairly large, 
experimental errors, at r<0.25-0.30°K. Qualitatively, 
this may account for the recent indirect determinations 
of ap in compressed liquid He3 by the University of 
Illinois investigators.9 These workers could not truly 
discriminate between the isobaric expansion coefficients 
at the same temperature, along isobars in the pressure 
range 14<^><29 atm. Within the experimental un­
certainties, the indirectly obtained aps seemed to be 
distributed along a single curve in the (ap,T) represen­
tative plane, at r<0.25-0.30°K. A cursory comparison 
of these experimental determinations of ap with the 
calculated ov.p's of Fig. 3 indicates only qualitative 
agreement. More than this couldnot be expected because 
of the lack of discrimination of the ap data over the 
indicated pressure range as well as the lower limit char­
acter of the calculated aff,p values. 

It may be hoped that direct measurements of the 
expansion coefficients ap of liquid He3 will be performed 
allowing a more extensive analysis of the partial spin-
expansion coefficients, at the low temperatures where 
they should be good approximations to the actual ex­

pansion coefficients of the liquid. Similar comparisons 
of aa,P or'of [— V(Typ)a<rtP] or (dSff/dp)T could be 
made with the pressure derivative of the liquid en­
tropies at the low temperatures, when they become 
available. 

5. LIQUID AND SOLID He3 ALONG THE PHASE 
SEPARATION LINE 

5.1. Some Thermal Properties of the Dense 
Phases at Equilibrium with Each Other 

at Very Low Temperatures 

With the rigorous formalism of the nuclear spin 
system of liquid He3 throughout the whole region of 
existence of this phase, it becomes possible to obtain a 
first outline of the entropy diagram of He3. This sketch 
of the entropy diagram is based partly on the approxi­
mate entropies of the liquid and solid in equilibrium 
along the phase boundary line at the lowest tempera­
tures. At the present time, the diagram still has a wide 
gap at and around the temperature of anomaly Ta of 
the melting pressure minimum. Beyond about 1.0°K 
or 40 atm, the entropies of the dense phases at the phase 
separation line are available with good approximation 
through the work of Grilly and Mills19 and that of 
Sherman and Edeskuty.20 

Our main object now is the evaluation of the ap­
proximate entropy values of solid He3 along the phase 
separation line, relying on the corresponding approxi­
mate entropies of the liquid in equilibrium with the 
solid. In thermodynamic equilibrium, the total entropy 
of the liquid is, in terms of the theory of the nuclear 
spin system, 

SL(T,p) = S.™tT(p)l+S».™(T,P), (44) 

the degrees of freedom of spin of the nonideal para­
magnetic system and the degrees of freedom other than 
spin forming two subsystems which allow the represen­
tation (44) of the total entropy.1 Since at T> 0, partial 
or component entropies are positive definite quantities, 
one has, with (44), 

lim MSL(T,p) = S^\:T(p)3, (45) 

or the partial spin entropy is a lower limit of the total 
entropy. At low enough temperatures, 

^ (L)[r(*)]»S»,<L> (T,p), T«T0(p), (46) 

and, at low pressures, at saturation or somewhat above 
saturation, the ratio C5<r(L)/5,

n<r(L)]r«ro(p) has been 
estimated by us8 to be about 5 to 5.5. At increasing 
pressures, we have shown8 that the low temperature 
partial entropy ratios may reasonably be expected to 
increase as a consequence of the spin entropy increase 
and the normal but small decrease of the nonspin 
entropy. The entropy change on solidification is, from 
thermodynamics, 

A 5 ( r ) = 5 L ( r ) - 5 s ( r ) (47) 
= lVi(T)-V,{T)l(dpM/dT), 
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Ss and Vs standing, respectively, for the entropy and 
volume of the solid. A lower limit of the solid entropy 
along the melting line is then given by 

lim in£S,.(*) = lim iniS L(T) ~ AS (T) 

= S / « [ r ( 0 ] - A S ( r ) , ( 4 8 ) 

where AS(T) is an empirically determined quantity. 
The partial spin entropy S<T(>L)[T(PM)1 along the melting 
line is fully determined by the formalism of the spin 
system derived above. The T0(p) relation has to be 
used here to pressures of about 33 atm which necessi­
tates the extrapolation of the empirical TG(p) law4 

from about 30.5 atm. In (47), the volume difference 
(VL— V8) may reasonably be expected to change only 
very little at r<0.32-0.33°K, at which temperature 
there is a measurement of this volume change due to 
Mills, Grilly and Sydoriak.22 

The experimental melting pressure values have been 
studied through various types of analytical least square 
fits by Dr. R. K. Zeigler and E. A. Perego, of this Labo­
ratory. The various analytical PM(T) functions have 
been obtained under the constraint that they reduce to a 
vertical osculating parabola in the (p,T) plane, in the 
neighborhood of the vertex of the melting line. The data 
fitted analytically over the temperature range 0.03-
0.40°K are a^composite of various melting pressure 
measurements of the Illinois group,9 the Los Alamos22 

and Ohio State University23 workers. The results of the 
latter group were known to be higher systematically 
than those of the Los Alamos group,22 and the Illinois 
workers9 could reconcile them with their own data and 
with those of the Los Alamos group on reducing them 
uniformly by a constant pressure Ap. Over the above 
temperature range, with the large number of data 
points, the various analytical expressions approximated 
the melting pressure data with rather good accuracy. 
This happens whether imposing upon the analytical fit 
the coordinates of the vertex or letting the latter to be 
determined also by the fitting process. They also yielded 
the derivatives (dpM/dT) which differed by a few 
percent at most with the various fits and over most of 
the temperature range. The class of analytical fits 
which carried no constraints as far as their behavior 
was concerned in the limit of the absolute zero became 
invalid physically in this limit, and they were used only 
down to about 0.02°K. I t is worth mentioning, although 
no use was made of it at all, that some of these analyti­
cal PM(T) approximations indicated the existence of an 
inflection point at somewhat above the beginning of the 
range, T~0.04°K, or somewhat below it, T~ 0.025°K. 

The analytical approximations having yielded similar 
AS-values, it appeared justified to assume tentatively 
that in the lower limit of the solid entropy Ss, in (48), 

22 R. L. Mills, E. R. Grilly, and S. G. Sydoriak, Ann. Phys. 
(N. Y.) 12, 41 (1961). 

23 D. O. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and 
A. S. McWilliams, Helium Three, edited by J. G. Daunt (Ohio 
State University Press, Columbus, Ohio, I960), p. 126. 

TABLE II. Calculated lower limits of the liquid He3 entropy and 
heat capacity and of the solid He3 entropy along the melting 
line. 

T 
(°K) 

0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 
0.065 
0.070 
0.075 
0.080 
0.085 
0.090 
0.095 
0.100 

pM 
(atm) 

32.91 
32.76 
32.61 
32.47 
32.33 
32.19 
32.06 
31.93 
31.80 
31.67 
31.55 
31.44 
31.32 
31.21 
31.10 
31.00 
30.90 

SL, M/R 

O083 
0.104 
0.123 
0.143 
0.162 
0.181 
0.199 
0.216 
0.233 
0.249 
0.265 
0.281 
0.294 
0.308 
0.322 
0.335 
0.347 

AS/R 

-0.448 
-0.438 
-0.427 
-0.417 
-0.407 
-0.397 
-0.387 
-0.377 
-0.367 
-0.357 
-0.348 
-0.338 
-0.329 
-0.320 
-0.311 
-0.302 
-0.293 

Ss> M/R 

0.531 
0.542 
0.550 
0.560 
0.569 
0.578 
0.586 
0.593 
0.600 
0.606 
0.613 
0.619 
0.623 
0.628 
0.633 
0.637 
0.640 

CL, M/R 

0.082 
0.102 
0.120 
0.137 
0.153 
0.168 
0.181 
0.193 
0.203 
0.212 
0.219 
0.226 
0.231 
0.235 
0.238 
0.240 
0.242 

AS(T) was rather well determined. The spin entropy 
S^L)[T(PM)~\ is fully tied to the paramagnetic suscep­
tibility of the liquid along the melting line and its theo­
retical description, which we saw above to be quite 
satisfactory at r(p)< 0.90-1.0. With the approximations 
stated one obtains, in a straightforward way, the lower 
limits of the solid entropy along the phase separation 
line. They are included in Table I I , which also gives 
the melting pressure pu{T), calculated with a par­
ticular analytical fit, the lower limit of the liquid 
entropy SL,M, through its spin entropy S<T,M{L\ and 
the approximate entropy changes on solidification 
AS (J1). The last column gives the lower limit of the 
liquid heat capacity CL.M, that is, its spin heat capacity 
C<X,M{L)> All entropies and heat capacities are in molar 
units. 

Within the limits of validity of Table I I , at the lowest 
temperatures, the lower limit of the solid entropy Ss 

falls considerably below the limiting asymptotic spin 
entropy of R ln2. Even with the extreme assumption, 
which attributes to the nonspin entropy a value equal 
to the spin entropy, it is only at about 0.035 °K that 
the solid entropy could reach the full spin entropy 
value. Actually, it is rather difficult to see how the non-
spin entropy of the liquid can reach, at the low tem­
peratures of Table I I , values larger than about (0.20-
0.25)5<r(L). If the latter situation prevailed, the solid 
entropy would become R ln2 at about 0.08-0.085 °K. 

I t is also possible to use a relation similar to (48) to 
obtain approximate lower limits of the solid He3 heat 
capacities along the melting line. One has here 

lim miCs>M(T) = C<r<L^T(pM)l-AC(T), (49) 

with AC(T) standing for (CL,M—CS,M)> This heat ca­
pacity difference along the phase boundary line is 

AC=T(d/dT)AS(T) 
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on the assumption that (d/dT) (VL— V8) is very small 
at the lowest temperatures and the term, T(dpM/dT) 
X (d/dT) (VL— VS), may be omitted in comparison with 
the term retained on the right-hand side of (50). The 
lower limit solid heat capacities are, of course, also 
available through the lower limit solid entropies SS,M 
of Table I I . One finds that these lower limit solid heat 
capacities vary between 0.0AR and 0.0SR over the 
temperature range (0.02-0.10) °K, with a hump at 
about 0.06-0.07°K. The latter may be spurious, and at 
the present time the order of magnitude of the lower 
limit solid He3 heat capacities is of significance as 
another aspect of the solid He3 entropy being below 
R In2, within the limitations of the approximate 
Table II . The thermodynamic entropy and heat capacity 
differences, (47) and (49), include of course the con­
tributions of all degrees of freedom. I t is hoped that 
experimentalists may soon investigate the interesting 
magnetic and thermal properties of the dense phases of 
He3 at and in the vicinity of the melting line. 

5.2. Some Points of the Liquid He3-Solid 
He3 Equilibrium 

The earliest observation on the susceptibility of solid 
He3 appeared to suggest6 that the solid susceptibility 
ratios belonged to an extension of the family of suscep­
tibility ratio curves of the liquid. This in turn seemed 
to justify8,2 the discussion of the thermal properties 
of the solid arising with its nuclear spin system, whereby 
the latter, according to the observations,6 exhibited a 
fairly large characteristic temperature even though 
smaller than in the highly compressed liquid. The dis­
cussions of the thermal properties of the solid were tied 
to the early susceptibility observations.6 In the light 
of the approximate solid entropy value of about 
(0.53-0.58)2? at 0.02°K, derived above, the heat ca­
pacity anomaly arising with its spin system must occur 
at r<0 .02°K, or the characteristic temperature of the 
spin system of the solid must be considerably smaller 
than indicated by the early susceptibility measure­
ments6 which have not been substantiated so far. The 
discussion of the thermal properties of solid He3 along 
the melting line2 have to be qualified accordingly. 
Namely, the suggested thermal anomaly of the solid 
extending to medium temperatures may now be un­
justified because of the highly reduced characteristic 
temperature of the spin system of the solid according 
to the just calculated approximate solid entropies. In 
pursuing the earlier suggestion advanced by us2 on the 
basis of the first susceptibility observations in the solid,6 

the Los Alamos group22 used a strictly thermodynamic 
analysis of their liquid He3-solid He3 equilibrium data. 
On adopting the not too unjustified attitude that the 
elastic behavior of the solid is normal, requiring its iso­
thermal compressibility X8)T(pM) to be smaller than, or 
at most equal to, that of the liquid in equilibrium with 
it? XLfT(pM)} the analysis showed that the solid should 

exhibit anomalous thermal properties below about 
0.95-1.0°K. I t should be noted in this connection that 
Bridgman24 called attention to the situation that in a 
liquid-solid transformation the elastic anomaly of the 
solid in the form just stated, XS)T(pM)>XLtT(pM), 
could not be ruled out. On postulating that solid He3 

must have normal thermal properties at medium tem­
peratures, the liquid He3-solid He3 equilibrium data22 

tend to impose elastic anomaly upon the solid. Recently, 
Heltemes and Swenson25 have made heat capacity 
measurements at constant volume on compressed solid 
He3, that is away from the boundary line, although the 
latter might have been approached. Since the solid tem­
perature was T>0.3°K, where even the early "solid" 
susceptibility observations claimed the reaching of the 
ideal paramagnetic susceptibility limit, all contributions 
of the nuclear spin system of the solid to its heat capac­
ity at these temperatures have been neglected ab uovo?h 

The measured heat capacities could be analyzed in terms 
of a Debye and an Einstein heat capacity, both of which 
appeared to yield through the volume variations of their 
respective characteristic temperatures, fairly constant 
Griineisen parameters. The constancy of the latter param­
eters suggested the use of the Debye-Einstein solid 
model, corrected by these empirical parameters, in evalu­
ating the isobaric expansion coefficient. Clearly, the 
above model in its form used by Heltemes and Swenson25 

could not but yield positive isobaric expansion coeffi­
cients for the solid. These then combined with the Los 
Alamos liquid He3-solid He3 equilibrium data22 could not 
but yield isothermal compressibilities XS>T of the solid 
which had to be larger or at least equal to the isothermal 
compressibility Xlj>T of the liquid in equilibrium with 
the solid along the melting line at T> 0.30°K. 

The analysis25 of the thermal properties of solid He3 

based on the model equation of state which allows only 
Debye and Einstein excitations to determine the 
thermal properties at r > 0 . 3 0 ° K needs additional justi­
fication to be satisfactory. Indeed, we have already 
attempted to point out in the preceding sections that if 
the paramagnetic susceptibility of a system was actually 
shown to be nonideal over a finite range of some state 
coordinates, such as the temperature for instance, that 
system cannot become an ideal paramagnetic at finite 
temperatures, unless it exhibits a magnetic transition 
process which imposes ideal behavior on it in a dis­
continuous fashion. If such a transition did not exist, 
as is the case in the liquid phase according to data 
available there at the present time, then the ideal limit­
ing behavior of the spin system is an asymptotic one, 
or, the spin entropy in the solid phase Ss>ff(T,p) might 
be expected to be of the same type as Sv

L[j(p)2, the 
liquid entropy, at higher temperatures. Hence, 

S.AT,P)/R= Q n 2 ) { l - c r [ e ( p ) / r ] } , 7 » 0 , (51) 
24 P. W. Bridgman, in Physics of High Pressure (G. Bell and 

Sons, Ltd. London, 1952), p. 215. 
25 E. C. Heltemes and C. A. Swenson, Phys. Rev. 128, 1512 

(1962). 
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where a(x) is some function of the temperature and 
another variable of state, through the parameter ©, 
and <J is such that 

lim a(x)-*0. (51a) 
x small 

I t should be noted that the dependence of a on T and p, 
through 0 / r in (51) is strictly illustrative inasmuch as 
the actual high temperature behavior of S8,<r is unknown 
at the present time. On the basis of (51), it is of course 
possible that, to a fair degree of approximation, at some 
value of T, T^>@, SSt<T may be close to R ln2, the ap­
proach being necessarily from below. However, it is 
seen that along an isobar, 

crj'KT,p)/R= (in2)(e/2>'(0/:r), 
a'(x) = d<r/dx>0, 

and along an isotherm, 

(ds.,./dp)T= - (R in2)r-v(0/r)(ae/a^)r 

= (-KC.,pMWT)/G)(dfydp)T. ( 5 3 ) 

Hence, the spin heat capacity and spin expansion co­
efficient, the latter proportional to (—)(dSs><r/dp)T, 
may not have approached their limiting vanishing 
values close enough. If the heat capacity and expansion 
coefficient arising with the degrees of freedom other 
than spin are quite small, which appears to be the case 
over a range of temperatures even at T>0.30°K, the 
contributions of the type (52) and (53) of the spin 
system to the thermal properties of the solid cannot be 
ignored. Stated in other terms, the analysis of Heltemes 
and Swenson25 is based on the implicit assumption that 
the derivatives of an asymptote may be substituted for 
the asymptotes of the derivatives, an assumption which 
needs to be closely justified to be acceptable in the case 
of the spin system of solid He3. I t would seem then that 
the preceding considerations, while essentially qualita­
tive, tend to set aside, at the present time, the tentative 
conclusions reached25 on the thermal properties of solid 
He3 resulting from an analysis which totally ignores the 
possible intervention of the nuclear spin system even at 
r>0 .30°K. Unless and until satisfactory proof is pro­
vided for the justified omission of the effects of the spin 
system on the thermal properties of solid He3, the 
problem posed by the latter remains more widely open 
than it ever was. 

I t should equally be noted that at r > 1 . 0 ° K , the 
apparent solid compressibilities 

Xs,iw= — Vs~
l(dVs/dpM), 

with the derivatives taken along the phase boundary 
line, and resulting from the Grilly, Mills and Sydoriak 
work19,22 on phase equilibrium, have not been con­
fronted with the liquid isothermal compressibility de­
terminations of Sherman and Edeskuty.20 The extensive 
liquid He3 equation of state data of these workers at 
r > 1 . 0 ° K , up to and including the melting line, must 

have escaped, we presume, the attention of Heltemes 
and Swenson.25 Actually, the Sherman-Edeskuty iso­
thermal compressibilities of the liquid along the melting 
line, at r > 1 . 0 ° K , are larger or at least equal to the 
solid compressibilities indicated by Heltemes and 
Swenson.25 Clearly, an assessment of the precision of 
these compressibilities appears to be quite difficult. 
Also, as shown recently with Dr. Mills,26 the derivative 
{dVs/dpM) is singular at Ta, and the problem of the 
thermal properties of the solid at and around the 
melting curve minimum are far from being settled. I t is 
equally worth noting that Grilly and Mills19 were the 
first to point out that at melting pressures, pM>50 
atm, there were indications of the extreme closeness of 
the liquid and solid He3 isothermal compressibilities 
along the phase separation line. 

The preceding studies clearly suggest the importance 
of direct measurements of the solid He3 expansion co­
efficients and compressibilities along the melting line. 
These should be helpful toward an understanding of the 
equilibrium between solid He3 and the thermally 
anomalous liquid He3, a problem which was stated in 
fairly general terms by us recently27 in connection with 
He4. 

5.3. The Entropy Diagram of He3 

With the approximate liquid and solid entropies de­
rived above at the low temperatures, and the entropies 
of these phases at r > 1 . 0 ° K which became available 
some time ago through the saturated liquid entropy,18 

the entropies of compression20 and the entropy changes 
on solidification,19,22 it is possible to sketch the principal 
lines of the entropy diagram of He3. We will limit our­
selves here to the entropy-pressure or (S,p) diagram. 

One of the simplest lines of this diagram refers to the 
entropy of the saturated liquid, SL(PS) which has as its 
tangent at the origin of the diagram the S axis itself. 
The singularity of the pressure slope dSL{ps)/dps is 
imposed essentially by the nuclear spin system. Indeed, 
one has 

dSL/dps= (dSL/dp)T+ (dSL/dT)p/(dps/dT) 

= -VL,#L,p+CL,p/T(dp9/dT), 

where ps refers to the saturation vapor pressure, VL,S 

the liquid volume, «L > P its isobaric expansion coefficient 
and CL,P its constant pressure heat capacity at the 
saturation line. By the Nernst theorem, 

lim aL,P -> 0, lim (dps/dT) -> 0, (55) 

while, the theory of the spin system requires that 

lim (CL,P/T) —> const. (56) 

26 L. Goldstein and R. L. Mills, Phys. Rev. 128, 2479 (1962). 
27 L. Goldstein, Phys. Rev. 122, 726 (1961); 128, 1520 (1962). 
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Hence, (51) yields 

lira (dSL/dps)^+00. (57) 
T-+0 

The SL(PS) curve rises thus steeply and increases 
monotonically to some finite large value, around 2R, 
at the critical pressure, £ c ^ l . i 5 atm. 

An interesting if auxiliary line of this (S,p) diagram 
is the straight line p=pM(Ta), which is tangent to the 
entropy curve of the liquid SL(PM) along the melting 
line PM(T) at the minimum melting pressure pM(Ta)* 
Using again the thermodynamic relation equivalent to 
(54), along the melting line, 

dSL,M(p)/dp= — VL(pM)aL,p(pM) 

+CL,p/T(dpM/dT), (58) 

one has, with OLL,P and CL,P being finite at pM(Ta), 

lim (dSLtM/dpM) —> + °° , 
p-+PMWa+) (59) 

lim (dSL,M/dpM) —> — °° , 
p-*PM(Ta_) 

or the pressure slope of SL,M has an infinite jump at 
PM(TO), 

^{dSL,M/dpM)Ta= (dSL,M/dpM)Ta+ 
— (dSL,M/dpM)Ta —> °° . (60) 

This shows how the melting line anomaly carries over 
into the entropy diagram through the singularities (59) 
of the pressure derivatives of SL,M at pM(Ta). The 
SL,M or SL(PM) curve has a vertex with a vertical 
tangent at pM(Ta). 

The SL,M line resembles a wide mouthed parabolic 
curve whose upper branch at SL,M>SL[JPM{TO)"] de­
creases uniformly with pressure toward its vertex. The 
entropy SL\J>M(Ta)~] is still somewhat uncertain. Esti­
mates based on entropies of the compressed liquid 
evaluated with incomplete constant pressure heat ca­
pacities of still exploratory character28,9 locate 
SLZPM(TO)^\ a t values close to Rln2, within rather 
generous limits (dz5S). At any rate, the osculating 
parabola of SL,M(P) at its vertex is 

. SL,M2(p)-SL,M2lpM(Ta)2==cbZp-pM(Ta)-}J (61) 

co standing for a constant. 
I t is seen in Table I I that at about 0.02°K the melting 

pressure reaches some 33 atm, approximately, and the 
entropy of the liquid has decreased from about OAR, 
at 0.10°K or 31 atm to about OAR at 0.02°K or 33 atm, 
or by a factor of about four over a pressure interval of 
2 atm. Now, whether the melting line PM(T) has con­
tortions or not at T<0.02°K, the nuclear spin system 
of the liquid imposes again a singular behavior on the 

28 M. Strongin, G. O. Zimmerman, and H. A. Fairbank, in Pro­
ceedings of the Eighth International Conference on Low Temperature 
Physics and Chemistry, London, 1962 (Butterworths Scientific 
Publications, Ltd., London, to be published). 

pressure slope (dSL,M/dp) in the limit of the absolute 
zero. Using (58), the first term on the right-hand side 
may be omitted because of the vanishing of aL,P(pM) 
at T—> 0. In the second term, with CL,P being the sum 
of the two positive definite partial heat capacities 
C<r,2,

(L) and Cna,p{L\ the term with the spin heat capacity 
yields 

lim (C<r,/L)/T) - » const., 

and with it 
lim (dSLtM/dp) -> - co , (62a) 
r->o 

if PM{T) approaches PM{0) monotonically from below, 
while 

lim (dSLtM/dp)->+«>, (62b) 

if PM(T) approaches PM(0) from above. The branch of 
SL(PM) at SL,M<SLtpM.(Ta)'] decreases monotonically 
in case (62a), inside the pressure interval pM(Ta)<p 
<PM(0), with vertical tangents at both ends of this 
interval. If SL,M did not decrease monotonically in this 
pressure interval, its derivative must have at least one 
singularity inside it, in addition to those at the limits 
of the interval. 

The region reserved to the liquid phase of the (S,p) 
plane is thus included between the finite S(ps) arc, the 
pressure axis and the SL,M(P) curve. The interesting 
family of entropy lines of this region is that of the iso­
therms SL(PJT). These isotherms form three groups. 
Those of the lowest temperature, group I, are anomalous 
throughout the length of their finite arcs. They start at 
S(ps) to increase monotonically until they reach the 
SL,M(P) line. If Ta(p&) is the temperature at which the 
locus of vanishing isobaric expansion coefficients reaches 
the saturation line, the group I isotherms are such that 

(dSr/dp)T<Ta(P8)>0; aLtP(T,p)<0, 

T<Ta(ps). (63a) 

The isotherms of group I I are normal over part of their 
finite arcs, and anomalous over the rest of their arcs. 
These isotherms have as their limiting curve the one 
which starts out at ps(Ta) with a vanishing tangent; 
those of T>Ta(ps) leave SL(PS) with normal or nega­
tive slopes. The latter increase toward zero to become 
positive and stay positive until they reach the SL,M(P) 
line. These are such that 

(dSL/dp)Ma<p.) = 0; (dSL/dp)T<0, 
Ta(ps)<T<Ta(p), (dSL/dp)T>0, 

Ta(p)<T<Ta(pM), (63b) 

where Ta (p) is the locus of vanishing a's or that of the 
minimas of SL(p), at ps(Ta)<p<pM(Ta). While the 
first member of this group leaves SL(PS) with vanishing 
pressure slope, its last member reaches SL,M(P) with a 
vanishing slope. These isotherms are those of 0.50 and 
1.25°K with ps(Ta) and pM(Ta) being, respectively, 



A68 L O U I S G O L D S T E I N 

almost vanishing and about 47.5 atm. Finally, the 
isotherms of r>1 .25°K, group I I I , all decrease mono-
tonically to end on SL,M(p), at 7>1.25°K, £ M >47.5 
atm. 

In contrast with the region of the (S,p) plane re­
served to the liquid phase, the region associated with the 
solid phase is as yet essentially unexplored. As was the 
case with SL,M(P), SS,M(P) is only known over finite 
arcs. We have in Table I I the approximate lower limit 
entropies of the solid along the melting line over the 
intervals of 0.02-0.10°K, and the pressure range of 
30.9 to about 32.9 atm. At 0.10°K, S9,M(P) may be in 
the range of 0.66-0.68i?, and at 0.02°K, this entropy 
has decreased to about 0.53-0.55i£. The entropy branch 
of the solid at Ss,M<SStMZpM(Ta)1, between 0.10°K 
and 0.32-0.33°K, or Tay and over the pressure interval 
of about 2 atm, increases from 0.66~0.68i£ to 
SL,MZpM(Ta)~], which may be close to Rln2, or 0.69R, 
a very small change indeed. At the present time, the 
Los Alamos equation of state data18-20'22 yield SStM(p) 
values between 1.0 and 2.0°K varying from about 0.71R 
to 0.7 5R> approximately. Assuming here that the spin 
entropy is close to its asymptotic limit, the nonspin 
entropy of 0.02R to 0.067? appears to be compatible 
with phonon entropy if due account is taken of the 
expected increase of the characteristic temperature of 
the phonons over the above temperature range, or the 
pressure range from 39 to about 76 atm, or the volume 
interval of 23.5 to 21.0 cm3/mole, approximately, ac­
cording to the Los Alamos data.19,20,22 The upper branch 
of the solid entropy SS,M(P) will have to decrease from 
about 0.71R, at 1.0°K, to the value of SL,M[j>M(Ta)~], 
the entropy at the vertex of SL,M(P) at r a . If the latter 
is close to R ln2, it is seen that over the rather wide 
temperature range (1.0-0.33) °K, and the pressure inter­
val, between 39 and 29 atm, the entropy change is quite 
small. In the (S,p) diagram then the approach of the 
lower and upper branches of S8tM toward the vertex 
SL,MLPM{T^)% as well as the way these two branches 
of the solid entropy join remains undetermined at the 
present time. 

The upper and lower branches of Sa,M form the 
boundary of a very narrow strip of the (S,p) plane on 
both sides of SL—S,M[.pM(.Ta)^, and over the indicated 
temperature and pressure ranges. If they joined 
smoothly at the vertex at pM(Ta), the SL,M and SS%M 
curves would have a first order contact at the common 
vertex. To the extent that one defines, in thisaffine 
plane, a curvature or radius of curvature, through the 

use of homogeneous coordinates possibly, the smooth 
joining of the two branches of SS,M would be accom­
panied by a very large curvature at the vertex. If these 
two branches did not join smoothly, then with Eq. (58) 
written for the solid, 

dSs>M(p)/dp= (dS8,M/dp)T+CStP/T(dpM/dT), (58a) 

it is seen that with finite derivatives, 

(dS9tM/dp)pMiTj%0, (59) 

at PM(TO^) and pM(Ta-), the constant pressure heat 
capacity should be such that the second term on the 
right-hand side be finite, its denominator vanishing at 
pM(Ta). I t is assumed here that the expansion coeffi­
cient of the solid is finite at Ta. This then raises the 
problem of the behavior of the constant pressure heat 
capacity of the solid, or of that of its isobaric expansion 
coefficient at pM(Ta). Strictly speaking, at Ta and 
PM(TO) the constant pressure heat capacity of the solid 
cannot be defined directly, since at the isobar of pM(Ta) 
the solid exists only at a single point of state coordinates 
ZpM(Ta),VM(Ta),Ta'}. As discussed by us recently29 the 
constant pressure heat capacity at pM(Ta) could be de­
fined through a limiting process. The same problem 
arises with (dSStM/dp)r at pM(Ta)- If the latter is 
finite, Cs,p would have to vanish at pM(Ta), a situation 
difficult to contemplate since Csv at VM(Ta) seems to be 
finite, the VM(TO) isochore being a finite arc.26 With the 
expansion coefficient or (dSStM/dp)T being finite, the 
needle shaped SS,M curve at the approach of the vertex 
SL,M(TO) with (59), or with a cusp of vanishing slope 
at the vertex, appears unlikely at the present time 

These discussions emphasized the importance of ex­
perimental investigations of the low pressure solid He3 

in the vicinity of the melting line over a wide tempera­
ture range. A clarification of the solid entropy curve in 
the pathological region of the melting pressure minimum 
appears to be of particular interest. 
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